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Analysis of microtubule dynamics using
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Microtubules are part of the structural network within a cell’s cytoplasm, providing structural support as
well as taking part in many of the cellular processes. A large body of data provide evidence that dynamics
of microtubules in a cell is reponsible for the performance of many critical cellular functions such as cell
division. In this article, we study the effect of four different isoforms of a protein tau on microtubule
dynamics using growth curve models. The results show that a linear growth curve model is sufficient
to explain the data. Moreover, we find that a mutated version of a 3-repeat tau protein has a similar
effect as a 4-repeat tau protein on microtubule dynamics. The latter findings conform with the biological
understanding of the effect of the protein tau on microtubule dynamics.

Keywords: growth curves; microtubule dynamics; polynomial regression; splines; MANOVA;
Wilks’ Lamda

1. Introduction

Microtubules are sub-cellular structures present in most plant and animal cells and form what is
known as the cytoskeleton (see [1,2]). They are cytoplasmic fibers with a tubular form, composed
of several strands linked by lateral interactions. A combination of biochemical, structural and
morphological analyses during the past three decades have shown that the cytoplasm of a cell is
not a disorganized mass of jelly but a highly structured cell compartment formed of a cytoskeleton,
one of whose principal components are microtubules.

Studies have revealed that microtubules are not only well organized, but also highly dynamic
(see [6,9]). By dynamic, we mean that they undergo changes in length over time. A microtubule
which grows and/or shortens very rapidly is said to be highly dynamic. The dynamics of the
microtubules are induced by their polymerization and depolymerization. This, in turn, affects all
the microtubule-induced cellular functions such as cell shape, intracellular transport, chromosome
segregation and flagella-mediated cell motility (see [3]).

The dynamics of microtubules in living cells has been of great importance in studying certain
diseases and their treatments. For instance, promising anti-cancer drugs suppress cell division by
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622 S.R. Jammalamadaka et al.

stabilizing microtubule activity. It is thus of interest to study the dynamics of these microtubules
under different treatments and conditions.

In this article, we study the effect of various isoforms of a protein called tau on microtubule
dynamics using statistical growth curve analysis. Using rigorous statistical analyses and tests, we
are able to confirm or refute various biological hypotheses about the microtubules under differing
treatment conditions. We observe in our analysis that a mutated 4-repeat (4R) tau, i.e. where G272
has been mutated to V, has a similar effect on microtubule dynamics as the 3-repeat (3R) tau. This
supports the structure function model of the biochemical interaction of the tau protein on the
microtubules.

2. Microtubule dynamics

Microtubule images in living cells are acquired by fluorescence microscopy. The images are in the
form of a video which is essentially a stack of still-images taken over successive time intervals.
Figure 1 gives one such still-image of various microtubules. In each stack, a certain number of
microtubules are selected and tracked, i.e. their individual coordinate locations are noted for each
image in the stack by the experimenter.

By observing a stack/video of the microtubules, the experimenter chooses some microtubules
whose tips are easy to track. These microtubule tips are then tracked in each frame. For each
microtubule, one fixes the initial position p0 = (a0, b0) (i.e. where the microtubule is attached
and seems to grow out of) as the initial observation or the origin. Then for each succeeding frame i,

the tip’s pixel location pi = (ai, bi) is noted. The Euclidean distance between the points p0 and
pi , i.e., ‖pi − p0‖, represents the approximate length of the microtubule in frame number i.

Figure 1. Microtubule tips are tracked manually or automatically. Picture courtesy Professors Stuart Feinstein,
Leslie Wilson and Dr Janis Bunker of the Department of Molecular Cellular and Developmental Biology,
UCSB.
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Figure 2. The path traversed by a typical microtubule tip. The first point (origin) is the location of one end
of the microtubule. Data courtesy Professors Stuart Feinstein, Leslie Wilson and Dr Janis Bunker of the
Department of Molecular Cellular and Developmental Biology, UCSB.

Figure 2 gives an example of the path taken by the sequence p0, p1, p2, . . . in a typical micro-
tubule. In practice, not all microtubules can be tracked for the same number of frames, as some
microtubules are lost or become denatured before others. Hence, for each tip, the tracking sequence
can be of different length. As a preliminary analysis, for our illustrative example, we consider
only those microtubules that could be tracked for the full set of frames (the number of which is
denoted by n). For each microtubule, we compute the length sequence {li} given by

li = {(ai − a0)
2 + (bi − b0)

2}1/2; i = 1, 2, . . . , n. (1)

For most in-vivo microtubules, the tip locations p1, p2, . . . are reasonably along a straight line,
as can be seen in Figure 2. In view of this, we define our ‘growth variable’ x(i), i = 1, 2, . . . , n

as the cumulative change in length up till frame i. Hence,

x(i) =
i∑

j=1

|lj − lj−1|, (2)

where we take l0 = l1, making x(1) = 0. This growth variable is our measure of the dynamics of
each microtubule and will be used for our growth curve analyses in this paper. Our growth curve
for a particular microtubule is thus defined by x(i), i = 1, 2, 3, . . . , n.

Note that an alternative measure of dynamics can be given by

y(i) =
i∑

j=1

‖pj − pj−1‖.

Such a measure would perhaps be more appropriate when the path is not as linear as in Figure 2
and is hence not used in this research.
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3. Growth curve modeling

Suppose that there are r different treatments (or groups) and x is the real-valued growth variable
measured at p different time points: t1, t2, . . . , tp for nj individuals chosen at random from the
j th treatment. Such correlated data over time, labeled ‘growth curves’, can be analysed using
the methods introduced in Potthoff and Roy [12]. It has been discussed and analysed later by
several authors, significant among them being Khatri [7], Grizzle and Allen [4], Rao [13], Pan
and Fang [11] and Sengupta and Jammalamadaka [14]. Using specialized packages, one can also
do exact tests for growth curve models, details of which can be found in Weerahandi [15].

We consider the following polynomial regression model of degree (q − 1) for the mean growth
of x for the j th treatment on the time variable t ,

E(xj (t)) = ψj0t
0 + ψj1t

1 + · · · + ψj,q−1t
q−1 (3)

for t = t1, . . . , tp; j = 1, . . . , r with p > q − 1. Let

ψ′
j = (ψj0ψj1 · · · ψjq−1) (4)

denote the vector of the growth curve coefficients for the j th treatment. The observations
xj (t1), . . . , xj (tp), being on the same specimen, are correlated, and we denote their variance–
covariance matrix by �.We assume � to be the same for all the r groups.Assuming nj observations
in the j th group, let Xj denote the p × nj matrix of the observations for the j th group. Since our
growth variable sequence obtained for each of the microtubules starts with x1 = 0, this first value
is redundant. It will make the design matrix X [Equation (5)] singular and is thus omitted. Let

X = [X1X2 . . . Xr ]. (5)

X is a p × N matrix of all the observations, where

N = n1 + n2 + · · · + nr . (6)

Therefore from Equation (3) we get

E(Xj ) = [BψjBψj . . . Bψj ]
= BψjE1nj

(j = 1, 2, . . . , r), (7)

where

B =

⎡
⎢⎢⎣

t0
1 t1

1 · · · t
q−1
1

t0
2 t1

2 · · · t
q−1
2· · · · · · · · · · · ·

t0
p t1

p · · · t
q−1
p

⎤
⎥⎥⎦ (8)

and Eab denotes a matrix of order a × b with all elements equal to 1. Bp×q is called the “design
matrix”. From Equation (7), we get

E(X) = [Bψ1E1n1 |Bψ2E1n2 | · · · |BψrE1nr
],

= BψA, (9)

where

ψ = [ψ1 . . . ψr ] (10)

is the q × r matrix of the growth curve coefficients, and

A = diag[E1n1 , E1n2 , . . . , E1nr
] (11)

is a block diagonal matrix with E1nj
(j = 1, 2, . . . , r) along the diagonal blocks and zeros

elsewhere. A is of order r × N .
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Let VecX be defined as the column vector obtained by stacking the columns of X one below
the other. Denoting Var(VecX) by Var(X), we find that

Var(X) = IN ⊗ �, (12)

where ⊗ denotes the Kronecker product of two matrices. Equations (9) and (12) define what is
called the growth curve model and considerable detail on this topic can be found in Kshirsagar
and Smith [8] and Pan and Fang [11].

4. Data description

Tau is a protein which plays a major role in microtubule dynamics and stability. Biologists
have a biochemical structural model for the mechanisms by which the various isoforms of
tau attach to the microtubules and affect their dynamics. Under these models, the 4R units of
tau are the main units by which it attaches to the microtubule (Figure 3). Similarly 3R units
of tau play the main role in attachment to the microtubule. 3R tau is the dominant tau iso-
form found in human fetuses whereas 4R tau appears mostly in adults. 4RGV is a mutant
of 4R in the second repeat unit, i.e. G272, has been mutated to V (denoted by G272V). This
mutation is known to cause fronto-temporal dementia with Parkinsonism-like symptoms (FTDP-
17) in humans and to affect the ability of 4R-tau to regulate microtubule dynamics. Under
the biochemical models, 4RGV is expected to behave like 3R tau in binding to the micro-
tubules. If true, the microtubules treated with 3R should have similar dynamics as those treated
with 4RGV.

Data on microtubules were collected by Professors Stuart Feinstein, Leslie Wilson and
Dr Janis Bunker of the Department of Molecular Cellular and Developmental Biology, UCSB.
In this paper we analyse the microtubule dynamics for four different classes; the control (or
un-injected untreated microtubules) and three treatments, which we describe briefly. In our modest
study, we have four treatment groups (including the control) as follows:

(1) Control: These are for the normal cells with no treatments. There are 27 observations in
this class.

(2) 3R: These are for cells injected with 3R tau. There are 22 observations in this class.
(3) 4R: These are for cells injected with 4R tau. There are 20 observations in this class.
(4) 4RGV: These are for cells injected with the G272V mutant of 4R tau. There are 16 observations

in this class.

Hence, there are a total of N = 85 observations in all the categories combined. Figure 4 shows
the plots for the growth variable x for these different treatment groups.

Figure 3. 4R and 3R tau schematic.
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626 S.R. Jammalamadaka et al.

Figure 4. Growth variables for the different treatment groups. Blue: control, red: 3R, green: 4R, black:
4RGV. Data courtesy Professors Stuart Feinstein, Leslie Wilson and Dr Janis Bunker of the Department of
Molecular Cellular and Developmental Biology, UCSB. Available in color online.

5. Growth curve analysis

To fit the growth curve model and to test various hypotheses, we perform the following compu-
tations, which are described more fully in [8]. For our analysis, we chose � to have the Rao’s
simple covariance structure:

� = B�B′ + Q�Q′,

where � is a q × q positive definite matrix, � a (p − q) × (p − q) positive definite matrix and
Q a p × (p − q) matrix of rank p − q with B′Q = 0. This ensures that the maximum-likelihood
estimates and the generalized least-squares estimates coincide. Other general structures of the
covariance matrix � are possible, but were not used, since they require iteratively reweighted
least squares procedures, which need large amounts of data. Under this assumption, the maximum
likelihood estimator of the coefficient matrix ψ is given by (see [11])

ψ̂ = (B′S−1B)−1(B′S−1X)A′(AA′)−1, (13)

where

S = X[I − A′(AA′)−1A]X′.

5.1 Model selection

The first step would be to determine the degree q − 1 of the polynomial in the growth curve model
that adequately fits the data. To do this, we test the hypothesis

H ∗
0 : the degree (q − 1) of the growth curves is adequate. (14)

To do this, we first obtain a matrix B2 of order p × (p − q) such that

B′
2B = 0, (15)

where B is as in Equation (8). This can be done by choosing (p − q) linearly independent columns
of [Ip − B(B′B)−1B′].
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Next we compute

S = X(I − A′(AA′)−1A)X′, (16)

where A is defined in Equation (11).
For each hypothesis testing problem, we need the following degrees of freedom (d.f.),

dm order of the error or hypothesis matrix,
dE d.f. associated with the error matrix, and
dH d.f. associated with the hypothesis matrix.

For this purpose, we construct the MANOVA table given in Table 1.
We construct the matrix of observations X24×85 and obtain the design matrix B24×q from

Equation (8). To perform the test we construct the Wilks’ � statistic defined by

�0 = |E0|
|E0 + H0| . (17)

To test the null hypothesis we use the fact (see, e.g. [13, Section 8c.5]) that the null distribution of

F = 1 − �
1/s

0

�
1/s

0

× ms − 2λ

dHdm
(18)

is approximately an Fν1,ν2 where

ν1 = dmdH,

ν2 = ms − 2λ

and

m = N − dm + dH + 1

2
,

s =
(

(dmdH)2 − 4

d2
m + d2

H − 5

)1/2

,

λ = (dmdH − 2)

4
.

In our case, p = 24 and N = n1 + n2 + n3 + n4 = 27 + 22 + 20 + 16 = 85.
The results of the tests for q = 1 and q = 2 are summarized in Table 2.
Based on the results, we see that a constant model (no change in time) is rejected but a linear fit

for the growth curve provides an adequate fit, and the model is well specified. Under the model that
the mean growth function is linear, we show the plots for the mean curves in Figure 5. Figure 5 also
shows how these linear fitted means for each class compare with the (non-parametric) observed

Table 1. MANOVA for testing model adequacy.

Source Degrees of freedom Dispersion, order (p − q = 22)

H ∗
0 r = 4 H0 = B′

2X[A′(A(AA′)−1A]X′B2
Error N − r = 81 E0 = B′

2SB2
Total N = 85 H0 + E0 = B′

2XX′B2
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628 S.R. Jammalamadaka et al.

Table 2. Summary of model adequacy tests for various growth curve models.

q �0 F p-value

1 0.0291 3.7062 4.4409E−16
2 0.3228 0.9018 0.7099

q − 1 is the degree of polynomial, �0 is the Wilks’ Lambda statistic and F is the
corresponding F approximation.

Figure 5. The observed means (solid lines) and the fitted means (dotted lines) using a linear (first-order
polynomial) growth curve.

means, computed as the mean at each time point for all the functions in that class. Figure 6
gives the error band (formed from the maximum and minimum observed value at each timepoint)
and the fitted curve for the control group. Based on the picture, the model fits the observed data
quite well.

Remark Most curve-fitting techniques, such as the polynomials, do not provide for local control
of shape. Consequently, local change (for example change in the observed function at one time
point) in a polynomial fit affects the entire fitted curve. The B-spline curve avoids this problem
by using a special set of blending functions that has only local influence and depends on only a
few neighboring control points.

The spline regression model for x on the time variable t is given by

E(xj (t)) = ψj0s0(t) + ψj1s1(t) + · · · + ψjq−1sq−1(t) (19)

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
J
a
m
m
a
l
a
m
a
d
a
k
a
,
 
S
.
 
R
a
o
]
 
A
t
:
 
2
2
:
4
9
 
3
1
 
M
a
y
 
2
0
0
9



Journal of Applied Statistics 629

Figure 6. The error band from the observed data (◦) and linear fit (∗) for the control group.

for t = t1, t2, . . . , tp; p > q − 1; j = 1, 2, . . . , r . Here s0(·), . . . , sq−1(·) are the basis functions.
Then, the growth curve coefficients for the j th treatment becomes

ψ ′
j = (ψj0ψj1 · · · ψjq−1). (20)

See, for example, James and Hastie [5], Mortenson [10] for further details. Such B-splines can
also be used to fit the data. Most of the analysis, as well as the testing is very similar to what has
been described so far, except that the design matrix B given in Equation (8) is to be replaced by

B =

⎡
⎢⎢⎣

s0(t1) s1(t1) · · · sq−1(t1)

s0(t2) s1(t2) · · · sq−1(t2)

· · · · · · · · · · · ·
s0(tp) s1(tp) · · · sq−1(tp)

⎤
⎥⎥⎦ . (21)

Such spline bases are likely to be useful when dealing with non-steady-state data. For the
steady-state data that we have dealt with in this analysis, linear fits seem to do perfectly fine as
expected.

5.2 Comparison of treatments

Next we test if the four groups, namely the control and the three treatments are significantly
different. Hence we test the hypothesis

H ∗
1 : ψ1 = ψ2 = · · · = ψ4

: LψM = 0, (22)

where,

L = I2 and M =

⎡
⎢⎢⎣

1 0 0
0 1 0
0 0 1

−1 −1 −1

⎤
⎥⎥⎦ .
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Table 3. MANOVA table for Testing H ∗
1 .

Source Degrees of freedom Dispersion, order (p − q = 22)

H ∗
1 m = 3 H1 = (Lψ̂M)(M′R11M)−1(Lψ̂M)′

Error N − r − (p − q) = 59 E1 = L(B′S−1B)−1L′
Total N − r − (p − q) + m = 62 H1 + E1

Table 4. p-values of various pairwise comparisons.

Pair Wilks’ � p-value

∗3R vs control 0.6839 0.0185
∗4R vs control 0.4112 1.3836E−4
∗4RGV vs control 0.4842 0.0043
3R vs 4R 0.8655 0.3150
3R vs 4RGV 0.9004 0.5616
4R vs 4RGV 0.8399 0.4179

∗ denotes a significant pair.

To test this hypothesis we construct the MANOVA table given in Table 3.
R11 in Table 3 is defined by,

R11 = (AA′)−1[I + AX′ × {S−1B(BS−1B)−1}XA′(AA′)−1]. (23)

Based on Table 2, we calculate the following Wilks’ � statistic,

�1 = |E1|
|E1 + H1| = 0.5564. (24)

and the corresponding F -statistic (with dm = 2) to be

F1 = 1 − √
�1√

�1
.
(dE − 1)

dH
= 6.5851. (25)

Under the hypothesis H ∗
1 , F1 has an F distribution with d.f. = (2dH, 2dE − 2) = (6, 116). The

p-value of this test thus turns out to be approximately = 0.0. Hence H ∗
1 is rejected, indicating at

least one of the growth curves significantly differ from the rest.
Next, we perform pairwise comparisons to see how the classes compare with one another.

These were carried out by fitting the model to two classes at a time and testing the appropriate
linear hypotheses for the equality of the polynomial coefficients (taken to be linear here). Table 4
summarizes these results.

These p-values show that there is significant difference between the following pairs: 3R vs
control, 4R vs control and 4RGV vs control. It is worth noting that the p-value for the pair (3R,
4RGV) is the highest, indicating that they are quite similar in their dynamics–confirming the
widely believed bio-chemical structure function model of the biologists.

6. Conclusion

We have provided a novel statistical analysis of the dynamics of microtubules. Our analysis
supports the widely held beliefs of biochemical functioning of microtubules and their responses
to various treatments.
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